

X. Wang^{1*}, L. Mukhtar¹, K. Nigmatullina²

¹Al-Farabi Kazakh National University, Almaty, Kazakhstan

³Saint Petersburg State University, Saint Petersburg, Russia

*e-mail: wangxiaojing1001@gmail.com

TOWARD A GOVERNANCE FRAMEWORK FOR AI-MEDIATED COMMUNICATION: REFRAMING MEDIA ECOLOGY IN THE AGE OF ALGORITHMS AND GENERATIVE TECHNOLOGIES

Artificial intelligence (AI) technology is reshaping the media ecosystem with unprecedented depth and breadth, emerging as a critical topic at the intersection of communication studies, information technology, and social governance. This paper centers on the theme of «AI-driven media ecosystem transformation» and systematically examines it through three analytical dimensions: technological penetration, industrial restructuring, and social impact.

The objective is to elucidate the comprehensive influence of AI on media production, distribution, and consumption patterns, while also addressing the ethical challenges and governance strategies associated with its integration. The study employs a mixed-methods approach, combining literature analysis, case studies, randomized controlled trials (RCTs), and the AHP-Delphi method. Through a systematic analysis of multi-source data, a «technology-industry-society» triadic research framework is established.

Findings reveal that AI has substantially enhanced the efficiency of content creation and dissemination, yet it has simultaneously intensified the information cocoon effect and raised concerns regarding creative homogenization. At the industrial level, traditional media organizations are evolving into data-driven entities, and business models are diversifying, though platform monopolies are increasingly prevalent. At the societal level, algorithmic usage has triggered issues related to subjectivity erosion and ethical misconduct, underscoring the urgent need for a multi-layered governance mechanism.

This research reveals that while algorithmic recommendations enhance user engagement, they significantly reduce information diversity. Although generative AI lowers the threshold for content creation, it introduces challenges related to copyright and attribution. The intelligent transformation of the media ecosystem must therefore strike a balance between technological efficiency and social responsibility. It establishes a systematic analytical framework, addressing the insufficient attention of existing research to generative AI and the broader creative industry, and provides theoretical references for algorithm governance within the Chinese context. Practically, this study offers strategic guidance to policymakers, media organizations, and the public in navigating the challenges of intelligent media transformation, contributing to the development of a healthier, more diverse, and sustainable media ecosystem.

Keywords: artificial intelligence, media ecology, technological transformation, industrial structure, algorithmic ethics, social impact.

Х. Ван^{1*}, Л. Мұхтар¹, К. Нигматуллина²

¹Әл-Фараби атындағы Қазақ ұлттық университеті, Алматы, Қазақстан

²Санкт-Петербург мемлекеттік университеті, Санкт-Петербург, Ресей

*e-mail: wangxiaojing1001@gmail.com

Жасанды интеллект арқылы коммуникацияны басқару жүйесін құру жолында: алгоритмдер мен генеративті технологиялар дәүіріндегі медиа экологияның қайта қарасы

Жасанды интеллект (ЖИ) технологиясы коммуникациялық зерттеулердің, ақпараттық технологиялардың және әлеуметтік басқарудың қызылсында маңызды тақырыпқа айнала отырып, медиа экожүйені бұрын-соңды болмаған тереңдік пен кеңдікпен қайта құруда. Бұл мақала «жасанды интеллектке негізделген медиа экожүйені трансформациялау» тақырыбына арналған және оны үш аналитикалық өлшем бойынша жүйелі түрде зерттейді: технологиялық енү, өнеркәсіптік қайта құрылымдау және әлеуметтік әсер.

Мақаланың мақсаты – жасанды интеллекттің бұқаралық ақпарат құралдарын өндіруге, таратуға және тұтыну үлгілеріне жан-жақты әсерін түсіндіру, сонымен бірге оның интеграциясына байланысты этикалық мәселелер мен басқару стратегияларын шешу. Зерттеу әдебиеттерді

талауды, жағдайлық зерттеулерді, рандомизацияланған бақыланатын сынақтарды (RCT) және АНР-Delphi әдісін біріктіретін аралас әдістер әдісін қолданады. Көп көзді деректерді жүйелі талдау арқылы «технология-индустрия-коғам» үштік зерттеу шеңбері құрылады.

Нәтижелер жасанды интеллект мазмұнды жасау мен таратудың тиімділігін айтарлықтай арттырғанын көрсетеді, бірақ сонымен бірге ол ақпараттық коконның әсерін күштейтіп, шығармашылық, гомогенизацияға қатысты алаңдаушылық, туғызды. Өнеркәсіптік деңгейде дәстүрлі медиа үйімдар деректерге негізделген үйімдарға айналуда, ал бизнес-модельдер әртаратандырылуда, дегенмен платформалық монополиялар барған сайын көп таралуда. Әлеуметтік деңгейде алгоритмдерді қолдану субъективтіліктің эрозиясына және этикалық нормалардың бұзылуына байланысты проблемаларды тудырды, бұл басқарудың көп деңгейлі механизмінің шұғыл қажеттілігін атап өтті.

Бұл зерттеу алгоритмдік нұсқаулар пайдаланушылардың белсенділігін арттырғанымен, ақпараттың әртүрлілігін айтарлықтай төмөндөтетінін көрсетеді. Генеративті AI мазмұнды жасау шеңгін төмөндесте де, авторлық, құқық пен атрибуцияға қатысты мәселелерді енгізеді. Сондықтан медиа әкожүйенін интеллектуалды трансформациясы технологиялық тиімділік пен әлеуметтік жауапкершілік арасындағы терең-тендікті сақтауы керек. Ол қолданыстағы зерттеулердің генеративті жасанды интеллектке және көнірек шығармашылық индустрияға жеткіліксіз назарын аудара отырып, жүйелі аналитикалық, құрылымды белгілейді және Қытай контекстінде алгоритмдерді басқаруға теориялық, сілтемелер береді. Іс жүзінде бұл зерттеу саясаткерлерге, медиа үйімдарға және жүртшылыққа салауатты, алаң түрлі және тұрақты медиа әкожүйенін дамуына ықпал ете отырып, медианы интеллектуалды түрлендіру мәселелерін шешуде стратегиялық нұсқауларды береді.

Түйін сөздер: жасанды интеллект, медиа экология, технологиялық трансформация, өнеркәсіптік құрылым, алгоритмдік этика, әлеуметтік әсер.

Х. Ван^{1*}, Л. Мұхтар¹, К. Нигматуллина²

¹Казахский национальный университет имени аль-Фараби, Алматы, Казахстан

²Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

*e-mail: wangxiaojing1001@gmail.com

На пути к созданию системы управления коммуникацией, опосредованной искусственным интеллектом: переосмысление медиаэкологии в эпоху алгоритмов и генеративных технологий

Технология искусственного интеллекта (ИИ) меняет медиа-экосистему с беспрецедентной глубиной и широтой, становясь важной темой на стыке исследований в области коммуникации, информационных технологий и социального управления. Эта статья посвящена теме «трансформации медиа-экосистемы, управляемой искусственным интеллектом», и системно рассматривает ее в трех аналитических измерениях: технологическое проникновение, реструктуризация промышленности и социальное воздействие.

Цель исследования состоит в том, чтобы изучить всестороннее влияние искусственного интеллекта на модели производства, распространения и потребления медиа, а также рассмотреть этические проблемы и стратегии управления, связанные с его интеграцией. В исследовании используется смешанный подход, сочетающий анализ литературы, тематические исследования, рандомизированные контролируемые исследования (РКИ) и метод АНР-Delphi. Благодаря систематическому анализу данных из нескольких источников была создана триадическая исследовательская структура «технология-промышленность-общество».

Результаты исследования показывают, что искусственный интеллект существенно повысил эффективность создания и распространения контента, но одновременно усилил эффект информационного кокона и вызвал опасения по поводу творческой гомогенизации. На промышленном уровне традиционные медиаорганизации превращаются в организации, основанные на данных, а бизнес-модели диверсифицируются, хотя монополии на платформы становятся все более распространенными. На социальном уровне использование алгоритмов вызвало проблемы, связанные с размыванием субъективности и нарушением этических норм, что подчеркивает настоящую необходимость создания многоуровневого механизма управления.

Это исследование доказывает, что, несмотря на повышение вовлеченности пользователей посредством алгоритмических рекомендаций, они значительно сокращают информационное разнообразие. Генеративный ИИ снижает порог создания контента и создает проблемы, связанные с авторским правом и указанием первоисточников. Таким образом, интеллектуальная трансформация медиа-экосистемы должна обеспечивать баланс между технологической эффективностью и социальной ответственностью. Он устанавливает систематическую аналитическую основу, устранив недостаточное внимание существующих исследований к генеративному ИИ и

креативной индустрии в целом, а также предоставляет теоретические рекомендации по управлению алгоритмами в китайском контексте. Практически это исследование предлагает стратегические рекомендации политикам, медиаорганизациям и общественности в решении задач интеллектуальной трансформации медиа, способствуя созданию более здоровой, разнообразной и устойчивой медиа-экосистемы.

Ключевые слова: искусственный интеллект, медиаэкология, технологическая трансформация, промышленная структура, алгоритмическая этика, социальное воздействие.

Introduction

According to the Digital News Report 2025 published by the Reuters Institute, public engagement with traditional media – including television, print publications, and news websites – continues to decline, while reliance on social media platforms, video-sharing sites, and online content aggregators is steadily increasing. This structural shift is significantly driven by advancements in artificial intelligence (AI), which are systematically transforming how information is produced, distributed, and consumed. The rapid evolution of AI technologies is profoundly reshaping the foundational architecture and operational dynamics of the global media ecosystem. As highlighted in McKinsey's Technology Trends Outlook 2025, released in July 2025, AI is projected to generate an annual economic impact of USD 80 – 130 billion on the media industry by 2025, primarily through enhanced content creation efficiency and associated revenue growth. Furthermore, according to PwC's Global Entertainment and Media Outlook 2025 – 2029, the compound annual growth rate for the global entertainment and media sector is forecasted at 3.66% from 2024 to 2029, with total industry revenue expected to reach approximately USD 3.51 trillion by 2029. Generative artificial intelligence is anticipated to boost productivity and operational efficiency while enabling innovative business models across various sectors. In this context, AI not only reconfigures the processes of content production and dissemination but also redefines the relationships among individuals, information, and technology, thereby presenting a critical issue with substantial practical implications and urgent scholarly relevance.

Currently, although AI has been widely applied in the media sector, systematic and multi-dimensional academic research in this area remains in its infancy. Existing literature primarily focuses on the technological applications, such as automated news generation and algorithmic recommendation mechanisms, while lacking an integrated analysis of the structural transformation across the entire media value chain-encompassing organizational

changes, business model innovations, and the evolution of competitive landscapes. Particularly with the rapid emergence of generative AI (AIGC), its impact on the broader creative production industry has not been thoroughly examined. Furthermore, although social and ethical concerns such as information cocoons, algorithmic bias, and the crisis of subjectivity caused by AI have garnered significant attention, there remains a notable absence of governance frameworks that integrate empirical research with localized contexts. Therefore, this study aims to address the existing research gap by examining emerging technological developments and adopting a systemic ecological perspective to bridge the analytical divide between technology, industry, and society. Through an in-depth analysis of this multi-level and dynamic transformation process, this research seeks to meet the practical demands of media ecosystem development in the AI era and contribute to the creation of a more inclusive, balanced, and responsible intelligent communication environment.

Literature Review

The transformation of the media ecosystem driven by artificial intelligence has emerged as a critical area of interdisciplinary inquiry within communication studies, sociology, and information technology. Prior research has explored this phenomenon from multiple perspectives—including technological applications, industrial restructuring, and societal implications—establishing a robust theoretical foundation for further investigation. The literature review will systematically synthesize existing scholarship according to the following framework:

First, drawing on the foundational theories of technical philosophy and media ecology, media environmentalism offers a central framework for understanding how technology profoundly shapes mediated social culture. Since McLuhan introduced the concept that “the medium is the message” in *Understanding Media* (p. 16-19), this perspective has underscored the importance of analyzing media technologies themselves—not merely their content—in assessing their transformative effects on social struc-

tures, cultural forms, and human perception. McLuhan argued that “media are extensions of man” (p. 29-31), asserting that while technological media extend human sensory capacities, they simultaneously alter perceptual balances and catalyze shifts in social organization. His vision of electronic media fostering a “global village” (p. 29, 515) proved especially prescient. Building on this, Böhm formally established the interdisciplinary field of media ecology, emphasizing how technological forms subtly influence patterns of social cognition and cultural expression. In “The Tyranny of the Medium,” he examined how print and television media enact distinct modes of control, thereby illuminating how media technologies reconfigure public discourse and cultural standards—a philosophical contribution that informs this study’s analysis of AI as a foundational medium reshaping the media environment. Gillespie further advanced this line of inquiry in 2014 by introducing insights from science and technology studies (STS) in “The Relevance of Algorithms,” where he contended that algorithms are not neutral tools but rather “sociotechnical assemblages” embedded with engineering norms, commercial imperatives, and institutional logics. This conceptualization provides a critical theoretical lens through which to examine algorithmic power in contemporary media systems.

Based on this, the platformization of media and the perspective of political economy criticism further reveal the underlying economic logic and power structures within the AI media ecosystem. In *Platform Capitalism* (2017, p. 49-55), Srnicek systematically elaborates how platforms convert media content and user behaviors into data assets through infrastructural control, enabling monopolization of the attention economy and eroding the bargaining power of traditional media institutions. Zuboff’s concept of “surveillance capitalism,” introduced in *The Age of Surveillance Capitalism* (2019), extends this critique by arguing that its core mechanism involves transforming lived human experiences into behavioral data for the purposes of prediction and behavioral control—offering critical insights into the ethical crises embedded in AI-driven media business models.

At the level of industry practice, research on automated news production examines how AI technologies reconfigure both the core workflows and cognitive frameworks of journalism. From an epistemological standpoint, Anderson (2018, p. 1-4) analyzes how the culture of “quantitative certainty” brought about by data and algorithms undermines the skeptical ethos central to traditional journalistic

practice. Meanwhile, Diakopoulos (2019, p. 4-7), in a pioneering ethnographic study, systematically investigates how automation alters the tempo of news production, reshapes journalists’ roles, and transforms news product formats, emphasizing that algorithmic accountability has emerged as a central concern in contemporary journalism, thereby deepening empirical understanding of AI’s practical implications for the field.

The algorithms and audience studies have further extended their focus to the mechanisms of information filtering and cognitive shaping. Since Pariser’s warning in “Filter Bubbles” (2011, p. 10-15), the academic community has continuously expressed concern about the potential consequences of algorithmic recommendations, particularly information narrowing and social fragmentation. Bucher advanced this discourse through empirical research in “If...Then: Algorithmic Power and Politics” (2018, p. 120-121), arguing that algorithmic power is not static but relational and generative. It dynamically shapes behavior, cognition, and subjectivity through the conditional logic of “if...then” in interactions among users, platforms, and cultural contexts, thereby shifting the analytical lens toward micro-level human-computer interaction and psychological processes.

Furthermore, research on ethical governance and future directions offers normative and institutional responses to the challenges posed by algorithmic societies. Mittelstadt et al. (2016) proposed an algorithmic ethics framework encompassing four core issues: non-transparency, bias, ambiguous causality, and accountability difficulties—establishing foundational thematic areas in the field. Chinese scholars Chen Changfeng and Wang Jinpeng further contended that the future news ecosystem should evolve toward human-machine collaboration, diversified checks and balances, and a recommitment to public service values, thus deepening critical reflections on technical power structures at the governance level and offering a pathway for reconstructing an ethically grounded media ecosystem.

To sum up, existing research has provided a rich foundation for understanding the interaction between AI and media; however, there remains significant potential for further development. First, the majority of studies have concentrated on the news industry, leaving the broader transformation of the creative sector—such as advertising, film and television, and music—driven by generative AI (AIGC), underexplored. Second, while much of the current research adopts a critical and deconstructive ap-

proach, there is a relative lack of constructive discussions on practical and feasible multi-stakeholder governance frameworks. Based on the identified research gap, this study adopts “ecological transformation” as its core theoretical framework. The reshaping of the media landscape by artificial intelligence is not merely a partial adjustment but a systemic transformation that permeates technological foundations, industrial logics, and socio-ethical structures. Accordingly, this study aims to transcend the constraints of individual disciplines or isolated analytical levels by organically integrating perspectives from technology philosophy, political economy, and ethical governance. It seeks not only to examine how intelligent technologies, as emerging media forms, shape perception and power dynamics, but also to investigate the competitive and cooperative interactions among multiple stakeholders throughout the process of industrialization. Furthermore, it endeavors to propose a governance paradigm that balances innovation incentives with ethical and value-based constraints.

Materials and Methods

This study employs a mixed-methods approach by integrating quantitative and qualitative strategies to systematically investigate the multifaceted impacts of artificial intelligence on the media ecosystem. First, with regard to research materials, a comprehensive set of multi-source data was collected to establish a robust evidentiary foundation. This includes authoritative monographs and scholarly articles in Chinese and English from the fields of media ecology and artificial intelligence, sourced from databases such as Web of Science, CNKI, and Google Scholar. The dataset also incorporates the Reuters Institute’s “Annual Digital News Report,” along with industry analyses and market statistics published by McKinsey, IAB, and PwC. Furthermore, systematic data were gathered from representative institutional cases, including public financial reports, annual reports, and executive statements from technology platforms (e.g., ByteDance, Google), traditional media organizations (e.g., Xinhua News Agency, China Central Television, The New York Times), vertical media outlets (e.g., The Information, Yiliwang), and advertising agencies (e.g., WPP Group). In addition, primary experimental data were obtained through controlled experiments, collecting behavioral data from 2,000 users within news applications, encompassing browsing patterns, reading duration, and interaction records. A comprehensive

informed consent process was implemented to ensure subject participation in accordance with ethical research standards. The purpose of the study, the scope of data collection, and the intended use of data were clearly explained to all participants. Participation was strictly voluntary, and individuals were informed of their right to withdraw from the study at any time without penalty. All personal information was guaranteed to remain confidential and de-identified, and written assurance was provided regarding data privacy and security protocols.

At the methodological level, this study begins with literature analysis and theoretical framework development, employing a systematic literature review to code and analyze scholarly sources, thereby establishing a three-dimensional analytical framework encompassing “technology-industry-society.” Subsequently, through targeted content analysis and cross-case comparisons, key information regarding technology adoption, organizational transformation, and business model innovation is extracted from industry reports and case materials, enabling the identification of distinct transformation pathways and strategic variations across media organizations. To assess the impact of algorithmic recommendations on user behavior, a randomized controlled trial (RCT) is implemented, in which users are assigned to either an experimental group (receiving algorithm-based recommendations) or a control group (receiving time-ordered recommendations), followed by a 14-day observational period. The research strictly adhered to the principle of informed consent. All participants provided written informed consent prior to the experiment, having been fully informed of the study’s purpose, procedures for data usage, and measures in place to protect their rights. Finally, the Analytic Hierarchy Process-Delphi method (AHP-Delphi) was applied to conduct expert consultations and systematically construct a media competitiveness assessment framework. To ensure the representativeness, professionalism, and authority of the expert panel, this study recruited eight senior experts from both academic and industry backgrounds through multiple rounds of structured consultation. Expert selection strictly followed three criteria: (1) at least 10 years of professional or research experience in fields such as media studies, data science, artificial intelligence, or brand management; (2) holding a deputy senior-level professional title or an equivalent executive position within their respective organizations; (3) representing diverse institutional affiliations to ensure multidisciplinary perspectives. Through structured questionnaires and iterat-

tive feedback rounds, the expert panel performed pairwise comparisons and assigned weights to the three core indicators—data assets (40%), algorithmic capabilities (35%), and brand influence (25%). All judgment matrices satisfied the consistency criterion ($CR < 0.1$), enabling a multi-level integration from macro-level trend analysis to micro-level mechanism validation, thereby ensuring the methodological rigor and scientific robustness of the assessment model.

By integrating diverse data sources and employing mixed methods, this study systematically examines the transformation of the media ecosystem driven by artificial intelligence. Through a combination of macro-level trend analysis and micro-level mechanism validation, the research aims to provide a comprehensive and objective understanding of this complex phenomenon, thereby offering robust support for both theoretical innovation and practical advancement.

Discussion and Results

The impact of artificial intelligence on the media industry is primarily evident in the technological integration across the entire content production process. AI has become deeply embedded in various stages of media production, significantly enhancing the level of automation and intelligence. This integration is exemplified by the widespread adoption of automated news generation, intelligent editing systems, and AI-driven content creation. In journalism, automated writing systems can generate news reports in real time from structured data. For instance, Xinhua News Agency's "Fast-Pen Xiaoxin" can produce coverage of sports events and financial reports within seconds. Reuters has developed an AI tool named "News Tracer," which continuously

monitors social media platforms such as Twitter to detect early indicators of breaking news, assess information credibility, and automatically generate preliminary news summaries. Its successor, "Lynx Insight," analyzes data patterns to offer journalists actionable insights—such as flagging anomalies in corporate financial reports for further investigation, and can even draft basic data-driven news sentences. This represents a benchmark application of AI in news planning and fact verification, relieving journalists of information overload and enabling them to concentrate on in-depth analysis and investigative reporting. The Associated Press employs Automated Insights' Wordsmith platform to automatically generate concise news articles on corporate earnings reports and sports events. Data that once required significant manual processing by journalists can now be transformed into thousands of structurally consistent and factually accurate short articles within seconds. This stands as one of the earliest and most successful implementations of AI in journalism, freeing reporters from repetitive, routine tasks and allowing them to focus on more nuanced storytelling and complex narratives. However, the growing integration of technology has introduced new challenges. First, the nature of journalistic work is shifting from content creation toward algorithm supervision and editorial oversight—raising concerns about the potential "de-skilling" of core journalistic competencies. Second, AI-generated content tends toward homogeneity, leading to reduced diversity across media outlets. At the level of information distribution, recommendation algorithms have become the primary filtering mechanism, designed to maximize user engagement but simultaneously reinforcing information silos and ideological polarization. Table 1 outlines the main application areas and impacts of AI in media production.

Table 1 – Main application types and impacts of AI in media production

Application type	Function AI description	Representative cases/tools	Influence
Automated press writing	Generate text news based on data	GPT-4, Wordsmith	Improve efficiency, news homogeneity risk
Personalized recommendations	Recommend content based on user behavior	TikTok algorithm, YouTube recommendations	User engagement increases and information cocoons form
Generative content creation	Generating images, audio, video	Midjourney, DALL·E	Creative democratization, copyright ownership is ambiguous
Intelligent fact-checking	Identify false information and deep fakes	Logically, Factmata	The quality of information and identification accuracy need to be improved

In addition to content creation, artificial intelligence has profoundly reshaped the information distribution landscape. Algorithmic recommendations have transitioned from auxiliary tools to core infrastructure and the dominant mechanism in the global information ecosystem. This shift has fundamentally restructured traditional information flows – distribution models long reliant on editors, portal websites, and social networks are increasingly being replaced by a highly personalized, data- and algorithm-driven content dissemination system, marking a paradigm shift in how information is delivered. A case in point is China's Toutiao, whose recommendation engine processes over 10 billion user requests daily, requiring immense computational power at every second – an illustrative example of the broader global trend toward algorithmic information curation. Modern recommendation systems represent complex engineering achievements, typically integrating collaborative filtering, content-based filtering, and state-of-the-art deep learning models. To assess the impact of algorithmic recommendations, a comparative experiment was designed to examine their effects on information diversity and user engagement. The study aims to quantitatively evaluate the influence of algorithmic systems on two key metrics: (1) the diversity of users' information environments, and (2) user engagement, measured by content consumption duration. By controlling for information sorting methods, the experiment seeks to determine whether algorithmic recommendations – while boosting engagement – may simultaneously contribute to echo chamber effects.

This study employed a Randomized Controlled Trial (RCT) design. A total of 2,000 adult volunteers were recruited via online platforms, and their status as regular users of news and information applications was verified through a pre-screening questionnaire. Participants were randomly assigned to one of two groups: the experimental group (Algorithm Group, $N = 1,000$) or the control group (Chronological Group, $N = 1,000$). The experimental materials and platform consisted of a newly registered news client with a content library containing over 10,000 annotated news articles spanning 12 domains – including politics, economics, technology, sports, entertainment, and health – ensuring comprehensive content diversity.

This experiment comprises three main phases: the pre-experiment phase, the experimental intervention phase, and the data collection phase. During the pre-experiment phase, all participants were granted a 3-day period of unrestricted system access, dur-

ing which their click, reading, and sharing behaviors were automatically recorded to construct initial user profiles for subsequent group assignment. In the subsequent 14-day experimental intervention phase, participants in the experimental group were exposed to an information feed generated by a hybrid recommendation system combining collaborative filtering and content analysis algorithms – mimicking the operational mechanisms of mainstream commercial platforms – whereas the control group received content strictly ordered by publication time without any personalized recommendations. Throughout the data collection phase, all user interactions were unobtrusively logged, including article IDs accessed, reading duration, likes, comments, and shares. The experiment's core outcome measures are information diversity and user engagement. Information diversity is quantified using the Simpson diversity index adapted from ecology, which assesses the breadth of users' information diets by calculating the dispersion of topic distributions across consumed articles, with the formula $1 - \sum(n_i / N)^2$, where n_i represents the number of articles in topic i and N denotes the total number of articles read. User engagement is operationally defined as the average daily time spent on content consumption (in minutes), serving as an indicator of users' interaction intensity.

After a 14-day experimental period and data cleaning, a total of 1,850 valid data points were obtained (930 in the experimental group and 920 in the control group). Independent samples t-tests were conducted to compare the two groups, and the results are presented in Table 2.

The experimental results demonstrate that the algorithmic recommendation mechanism exerts a significant and multifaceted influence on users' information exposure and engagement levels. First, regarding information diversity, the diversity index in the experimental group was 41.8% lower than that of the control group (0.39 vs. 0.67), indicating that the algorithmic system accurately aligns with users' historical preferences and consistently delivers homogeneous content, thereby substantially narrowing the scope of information to which users are exposed. This provides empirical support for the existence of the "information cocoon" effect. Second, with respect to user engagement, the average daily content consumption time in the experimental group was 64.9% higher than in the control group (46.5 minutes vs. 28.2 minutes), suggesting that algorithms effectively capture user interests, enhance platform stickiness, and improve retention rates – factors that elucidate the rationale behind their

widespread adoption by commercial platforms. The data further reveal that algorithms succeed in capturing greater user attention by increasing reading

efficiency and enhancing content appeal; however, this gain in efficiency comes at the cost of reduced information breadth and serendipitous exposure.

Table 2 – Comparison results of algorithm recommendation and time sorting on information diversity and user engagement

Assessment indicators	Experimental group (algorithm recommendation)	Control group (time sorted)	amplitude of variation	Statistical significance (p values)
Information Diversity Index	0.39	0.67	-41.8%	p < 0.001
Average daily consumption time (min)	46.5	28.2	+64.9%	p < 0.001
Number of articles read per day	22.3	18.5	+20.5%	p < 0.01
Thematic concentration (Herfindahl index)	0.31	0.12	+158.3%	p < 0.001

As Chen Changfeng observes in the article “Generative Artificial Intelligence and Journalism: Practical Empowerment, Conceptual Challenges and Role Reconfiguration,” the transformation driven by generative artificial intelligence in journalism will extend beyond functional enhancements to fundamentally reshape the conceptual and structural foundations of the field. The emergence of generative AI has deepened technological integration into creative processes, significantly accelerating the transformation of the creative industry. Its core advancement lies in its capacity to interpret and execute cross-modal “creative instructions” (i.e., prompts), enabling the generation of high-quality content from scratch in alignment with human intent.

In the domain of visual art, generative models such as DALL-E 3, Midjourney, and Stable Diffusion are capable of producing high-quality images across diverse styles—including photography, illustration, and 3D rendering—based on textual prompts. The output quality of these tools has attained commercial viability and is increasingly leveraged in applications such as concept design, marketing materials, character design, and product prototyping. For instance, advertising agencies can rapidly generate hundreds of creative variations within minutes using descriptive prompts such as “a dachshund in an astronaut suit playing golf on the moon, cyberpunk style,” thereby accelerating ideation and early-stage visualization processes.

In the realm of text generation, advanced models such as GPT-4 and Claude 3 are capable of producing diverse content including news articles, poetry, scripts, advertising copy, code, and even full-length novels. These models support the entire content creation pipeline—from initial outlining and drafting to

style adaptation, translation, and final refinement. Leading news organizations like the Associated Press and Reuters have already integrated these AI systems to automatically generate reports on financial updates and sports events. In the domain of audio-visual and cross-modal generation, emerging video models such as Sora (OpenAI), RunwayML, and Pika are driving a new wave of innovation. They can generate high-quality, temporally coherent short videos directly from textual descriptions. Similarly, AI-powered music generation platforms like Suno and Udio can compose complete musical pieces across various genres and vocal styles. These advancements substantially reduce time and costs during the pre-production and prototyping phases in the film, music, and gaming industries.

Generative AI has restructured the creative workflow by transforming it from a traditional linear pipeline into a highly iterative, human-machine collaborative process centered on “prompt engineering.” This shift significantly accelerates creative exploration and conceptualization, enabling teams to rapidly generate numerous visual and textual solutions within hours. In industries such as film, gaming, and architecture, AI can swiftly convert concept descriptions into high-quality prototypes, storyboards, or atmospheric visuals, facilitating early alignment between teams and clients before incurring substantial production costs – thereby reducing both time and communication overhead. Furthermore, this technology enables the large-scale generation of personalized content. Brands can automatically produce thousands of variations of advertisements – spanning copy, images, and videos – from a single core asset, tailored to specific regions and audience segments, achieving a level of

marketing precision that was previously unattainable given human limitations.

The industry report further substantiates the aforementioned trends. According to IAB's "2025 Digital Video Advertising Expenditure and Strategy Report," generative AI is fundamentally reshaping the production of digital video advertisements. By 2026, over 40% of small and medium-sized enterprise (SME) ad content is projected to be created using generative AI technology, enabling the "democratization" of video advertising through automated content generation, voice dubbing, visual design, and editing processes. Currently, approximately 30% of advertising creatives are either fully generated or significantly enhanced by generative AI, with this figure expected to rise to 40% within the next few years. Furthermore, nearly 90% of advertising buyers are already utilizing or planning to adopt generative AI for digital video ad production, underscoring sustained industry confidence in its transformative potential.

However, this transformation is accompanied by a series of significant challenges. First, copyright and intellectual property issues arise as AI models are primarily trained on copyrighted materials, while the ownership of AI-generated content remains legally ambiguous. Second, aesthetic homogenization and the emergence of a distinct "AI flavor" are growing concerns: because models are trained on aggregated data, their outputs often reflect averaged stylistic tendencies, which may lead to a convergence in creative expression and undermine artistic uniqueness and cultural diversity. Third, the proliferation of deepfakes and AI-generated media has intensified concerns regarding information authenticity and trust, making it increasingly difficult to verify the credibility of digital content and posing serious risks to journalism and public trust.

Artificial intelligence is profoundly reshaping the media industry's value chain, driving systematic transformation across content production, distribution, and commercialization. Traditional media organizations are evolving from "content factories" into "intelligent ecosystem platforms," a shift manifested in three key dimensions. First, organizational structures are becoming more flat and agile – innovative units such as BBC's News Labs and The New York Times' AI Lab have dismantled traditional silos, establishing data-driven collaborative networks. Second, talent composition is shifting toward integrated "content + technology + data" capabilities, giving rise to new roles such as prompt engineers, data narrative specialists, and algorithm ethics officers. Organizations like The Wall Street Journal

have implemented structured AI training programs to cultivate these competencies. Third, production workflows are being intelligently reengineered, establishing a "human-machine collaboration" paradigm: following the adoption of AI-assisted writing systems, The Associated Press achieved a 12-fold increase in financial report coverage, while CCTV News reported a threefold improvement in short video production efficiency after integrating AI-powered video editing tools.

The intelligent transformation has spurred diverse innovations in business models. Programmatic ad placements, driven by user behavior prediction, enable precise advertising and marketing. For example, Youku leverages AI-generated user profiles to improve click-through and conversion rates, while The New York Times employs AI analysis of reading habits to reduce user churn. AI technology is also redefining the value of content assets – BBC, for instance, uses intelligent tagging to organize historical images and develops specialized vertical services for educational institutions. Furthermore, platform-based service models have expanded significantly. Thomson Reuters transformed its AI-powered legal news processing system into the Factiva AI platform, generating over 100 million USD in annual revenue. Similarly, Xinhua News Agency launched the "Media Brain" initiative to provide AI-driven news gathering and editing solutions to prefecture-level media organizations.

The competitive landscape has undergone significant reconfiguration, characterized by increasingly diverse market participants. Technology giants such as Google have expanded into the content domain via initiatives like "Google News Showcase," while Apple has integrated over 300 mainstream periodicals into its platforms. AI-driven startups, including Persado and Wordsmith, now provide specialized content generation services. As a result, the axis of competition has shifted from content exclusivity to technological leadership. For example, Disney has established an AI research center, and Condé Nast has acquired an AI startup to develop an intelligent content production system. The evolving ecosystem reflects intensified strategic collaboration: Microsoft and OpenAI have secured a data licensing agreement with News Corporation, and ByteDance has leveraged its Massive Engine to build a comprehensive content ecosystem. Meanwhile, The Wall Street Journal has formed strategic partnerships with multiple AI firms to ensure technological agility and diversity. However, regional disparities persist – AI adoption in the media sector is significantly higher in Europe and North America than in parts

of Asia and the Pacific. This uneven development may widen the technological divide and reshape the global media hierarchy.

Through these transformations, the media industry is shifting from a labor-intensive to a technology-intensive model, with its value creation increasingly driven by data rather than solely by content production. Industry boundaries are continuously expanding and blurring, bringing both enhanced efficiency and new innovation opportunities, as well as emerging challenges in technological ethics, regulatory frameworks, and talent development.

The deep integration of artificial intelligence has further triggered multifaceted crises of subjectivity. As Gordon Pennycook and colleagues observed, reliance on smartphones or the internet for information reduces activation in brain regions associated with critical thinking, leading to a tendency toward shallow cognitive processing. In the AI-driven environment, human dependence on technological tools has intensified, blurring the subjectivity of creative agents. Humans have transitioned from direct creators to roles such as prompt engineers and content curators, challenging the traditional notion of authorship.

There remains a significant gap in the governance framework for artificial intelligence ethics. Algorithmic transparency is inadequate, hindering users' ability to comprehend the logic behind content recommendations. Responsibility attribution is ambiguous – when AI-generated content causes harm, the legal responsibilities of platforms, technology providers, and end users lack clear definition. Moreover, regulatory mechanisms consistently lag technological advancements. For instance, in the case of deep-fake technology, detection and gov-

ernance measures often trail the rapid evolution of synthetic media techniques. To address these challenges, multi-level strategies are essential: at the technical level, advancing explainable AI (XAI) and algorithm auditing tools can enhance system transparency; at the legal level, clarifying copyright ownership and delineating liability for AI-generated content is critical to strengthening the regulatory framework; at the industry level, establishing ethical guidelines and self-regulatory mechanisms can promote responsible development; and at the social level, enhancing public algorithm literacy through education can empower individuals to critically engage with AI-driven systems.

Conclusion

Artificial intelligence is reshaping the media ecosystem across three interconnected dimensions – technology, industry, and society. At the technological level, multimodal integration and real-time content generation are transforming both content production and user experience. At the industrial level, new regulatory frameworks such as algorithmic auditing and regulatory sandboxes must be established to ensure responsible development. At the social level, it is essential to assess AI's impact on individual cognition and social consensus, guiding its evolution through measures like AIGC identification and digital inclusiveness. The evolution of the future multimedia ecosystem reflects a dynamic, co-constructed process. AI-driven media transformation entails a deeply interwoven mutual construction across technical, industrial, and societal domains, rather than a unidirectional or linear progression, as illustrated in Figure 1.

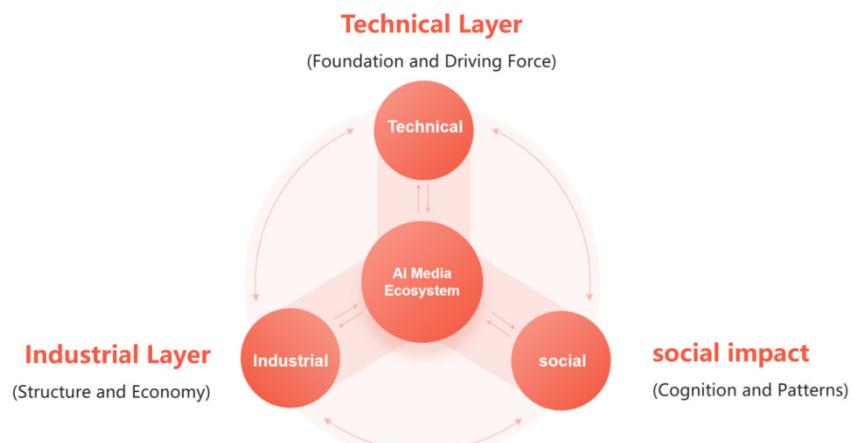


Figure 1 – The Path of the Artificial Intelligence Media Ecosystem

Based on an analysis of technological evolution trends, the future of media artificial intelligence will be characterized by several key developments. First, multimodal integration will become mainstream, enabling deep integration in the generation and understanding of text, images, audio, and video, thereby delivering richer and more immersive media experiences. Second, personalization will be significantly enhanced, as AI systems will gain a more accurate understanding of user contexts and preferences, allowing for highly customized content delivery. Third, breakthroughs in real-time content generation are expected; with advances in computing power and model optimization, the on-demand production of high-quality content in real time will become feasible, greatly improving media responsiveness. Fourth, human-machine interaction methods will become increasingly natural, as voice, gesture recognition, and brain-computer interfaces gradually enter widespread use, transforming the way users consume media content.

In terms of strategic technological development directions, future efforts should focus on three critical areas: first, advancing more efficient few-shot learning techniques to reduce dependence on large-scale annotated datasets; second, improving the controllability and predictability of AI-generated content to ensure reliability and alignment with user intent; and third, strengthening research into content authenticity verification technologies to effectively address emerging threats such as deepfakes.

System innovation is essential for cultivating a healthy media ecosystem. In terms of governance frameworks, it is recommended to strengthen institutional design across multiple dimensions. First, an algorithm accountability system should be established, requiring the registration of core algorithmic systems and introducing an independent third-party auditing mechanism to regularly evaluate algorithms in terms of fairness, non-discrimination, and societal impact. Second, a comprehensive media transparency framework must be implemented, mandating disclosure of algorithmic recommendation principles, clear labeling of AIGC-generated content, and regular publication of data usage transparency reports to protect users' right to information. Regarding regulatory innovation, adopting a "regulatory sandbox" approach allows emerging technologies to be tested in controlled environments, thus balancing innovation with effective risk mitigation. Furthermore, a multi-stakeholder governance framework should be developed, clearly delineating the roles and responsibilities of governments, platforms, media orga-

nizations, and the public, fostering a collaborative governance model. Specifically, a content oversight system tailored to the unique characteristics of generative artificial intelligence should be established. Key measures include implementing an AIGC identification mechanism to ensure source transparency, refining infringement assessment criteria to safeguard original creators' rights, and establishing a content traceability system to enhance accountability. Concurrently, a holistic evaluation index system for assessing the social impact of media AI should be developed, encompassing three critical dimensions: at the individual level, evaluating its effects on cognitive capacity, privacy rights, and personal autonomy; at the societal level, assessing its influence on information diversity, cultural continuity, and social cohesion.

This study systematically examines the comprehensive transformation of the media ecosystem driven by artificial intelligence. It reveals that AI technology has fundamentally reshaped the operational logic of the media industry by transforming content production, distribution, and consumption models. At the technical level, automation and intelligence have emerged as defining characteristics; at the industrial level, platformization and data-driven strategies have reconfigured the competitive landscape; at the social level, the evolving human-machine relationship has given rise to new ethical challenges. To address these multidimensional changes, this study develops an analytical framework integrating technical, industrial, and social perspectives, proposes a systematic governance pathway, and establishes a social impact assessment index system. The findings offer regulatory guidance for policymakers, strategic references for media organizations, and a knowledge foundation for public engagement in digital society construction. Nevertheless, this study primarily relies on existing case analyses and lacks longitudinal data, with limited attention to the specific contexts of countries in the Global South. Furthermore, due to the rapid pace of technological advancement, certain conclusions may require timely updates. Future research should enhance cross-national comparative studies, incorporate cultural diversity considerations, and validate theoretical frameworks through empirical evidence.

Overall, the transformation of the media ecosystem driven by artificial intelligence is a long-term and complex process that demands the coordinated advancement of technological innovation, institutional design, and social adaptation. The enhancement of the governance system is crucial to ensuring

a smooth and orderly transformation. A trustworthy AI-driven media environment should be established through well-defined accountability mechanisms and transparent operational requirements. Only

through the establishment of an inclusive, diverse, and responsible intelligent media ecosystem can we effectively support the sustainable development of human society.

References

Chen, C., & Wang, J. (2025). Artificial intelligence as news infrastructure: Technological motivation, power transfer, and trust reconstruction [in Chinese]. *Press Circles*, 4, 4–13.

Anderson, C. W. (2018). *Apostles of certainty: Data journalism and the politics of doubt*. New York, NY: Oxford University Press.

Pariser, E. (2011). *The filter bubble: What the Internet is hiding from you*. New York, NY: Viking/Penguin Press.

Interactive Advertising Bureau. (2025). 2025 digital video ad spend & strategy report.

McLuhan, M. (1969). *Understanding media: The extensions of man*. New York, NY: Signet.

Gillespie, T., Boczkowski, P. J., & Foot, K. A. (2014). *Media technologies: Essays on communication, materiality, and society*. Cambridge, MA: MIT Press. <https://doi.org/10.7551/mitpress/9780262525374.001.0001>

Lareina, Y., Michael, C., Roger, R., & Sven, S. (2025). *Technology trends outlook*. McKinsey Global Institute.

Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. *Big Data & Society*, 3(2). <https://doi.org/10.1177/2053951716679679>

Barr, N., Pennycook, G., Stoltz, J. A., & Fugelsang, J. A. (2015). The brain in your pocket: Evidence that smartphones are used to supplant thinking. *Computers in Human Behavior*, 48, 473–480. <https://doi.org/10.1016/j.chb.2015.02.029>

Postman, N. (2005). *Amusing ourselves to death*. London, UK: Penguin Books.

Diakopoulos, N. (2019). *Automating the news*. Cambridge, MA: Harvard University Press. <https://doi.org/10.4159/9780674239302>

Srnicek, N. (2017). *Platform capitalism*. Cambridge, UK: Polity.

PwC. (2025). *Global entertainment and media industry outlook 2025–2029: China summary*. <https://www.pwc.com/entertainment-and-media-outlook-2025-2029.pdf>

Bucher, T. (2018). *If...then: Algorithmic power and politics*. New York, NY: Oxford University Press.

Gillespie, T. (2014). The relevance of algorithms. In T. Gillespie, P. J. Boczkowski, & K. A. Foot (Eds.), *Media technologies: Essays on communication, materiality, and society* (pp. 167–194). Cambridge, MA: MIT Press. <https://doi.org/10.7551/mitpress/9780262525374.003.0009>

Zuboff, S. (2019). *The age of surveillance capitalism: The fight for a human future at the new frontier of power*. London, UK: Profile Books.

Information about authors:

Wang Xiaojing (corresponding author) – Doctoral Student, Al-Farabi Kazakh National University (Almaty, Kazakhstan, e-mail: wangxiaojing1001@gmail.com);
Mukhtar Lazzat – PhD, Al-Farabi Kazakh National University (Almaty, Kazakhstan, e-mail: mukhtar.lazzat@kaznu.edu.kz);
Kamilla Nigmatullina – Doctor of Political Sciences, Professor, Saint Petersburg State University (Saint Petersburg, Russia, e-mail: k.nigmatulina@spbu.ru).

Авторлар туралы мәлімет:

Ван Сюоцин (корреспондент-автор) – докторант, әл-Фараби атындағы Қазақ ұлттық университеті (Алматы, Қазақстан, e-mail: wangxiaojing1001@gmail.com);
Мұхтар Ләззат Қанатқызы – PhD, әл-Фараби атындағы Қазақ ұлттық университеті (Алматы, Қазақстан, e-mail: mukhtar.lazzat@kaznu.edu.kz);
Нигматуллина Камилла Ренатовна – саясаттануғылымдарының докторы, профессор, Санкт-Петербург мемлекеттік университеті (Санкт-Петербург, Ресей, e-mail: k.nigmatulina@spbu.ru).

Сведения об авторах:

Ван Сюоцин (автор-корреспондент) – докторант, Казахский национальный университет имени аль-Фараби (Алматы, Казахстан, e-mail: wangxiaojing1001@gmail.com);
Мұхтар Ләззат Қанатқызы – PhD, Казахский национальный университет имени аль-Фараби (Алматы, Казахстан, e-mail: mukhtar.lazzat@kaznu.edu.kz);
Нигматуллина Камилла Ренатовна – доктор политических наук, профессор, Санкт-Петербургский государственный университет (Санкт-Петербург, Россия, e-mail: k.nigmatulina@spbu.ru).

Received: October 4, 2025

Accepted: December 8, 2025